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Abstract 
Large language models (LLMs) have become widely used for tasks such as translation, writing 
assistance, and code generation, with platforms like ChatGPT growing from 300 million users in 
2022 to a projected 1 billion in 2025. Closed-source models dominate in performance but lack 
transparency, restricting use in privacy-sensitive domains. However, open-source LLMs—while 
enabling local deployment and full data control—typically lag in accuracy, especially in 
verification and correction tasks crucial for reliable deployment. 

This work investigates methods to improve open-source LLM accuracy without retraining by 
using iterative refinement loops, where one model evaluates and corrects the outputs of another. 
The goal is to identify which open-source models perform best as evaluators across different 
domains. We test three relevant models—LLaMA 3, Qwen 2.5, and Qwen 3—on handcrafted 
question–answer pairs spanning logical reasoning, mathematics, factual knowledge, and coding. 
Models were prompted to first verify answers and, if incorrect, produce corrections. 

Results show Qwen 3 excels in reasoning, math, and code correction, while LLaMA 3 leads in 
factual verification and correction. Qwen 2.5 provides balanced but mid-tier performance across 
domains. Future work will expand dataset size, incorporate automated fact-checking pipelines, 
and explore hybrid refinement strategies combining model strengths. 

If successful, this approach will improve open-source LLM reliability for academic, industrial, 
and privacy-critical applications, reducing dependence on closed-source systems and broadening 
the accessibility of high-performance language AI. 

Introduction 
The recent rise to fame of AI has been most obvious through the use of LLMs. LLMs (Large 
Language Models) are pretrained transformer models that have been trained on a significant 
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corpus of text on a variety of different topics. These models are intended to have general-purpose 
text comprehension and generation capabilities. LLMs are becoming increasingly popular for use 
in a wide range of domains. They have been shown to be proficient in a variety of tasks such as: 
translation, open writing generations, code synthesis, etc [1]. ChatGPT, an LLM created and 
distributed by Open AI, has gone from 300 million users in 2022 to a projected 1 billion in 2025. 
Some other prevalent LLMs being used are Claude by Anthropic, and Gemini by Google. 

 
These prevalent LLMs all fall under the umbrella of being closed source LLMs. A closed-source 
large language model is an LLM whose architecture, training data, and parameter weights are not 
publicly disclosed, with access typically restricted through proprietary APIs or licensing 
agreements. In comparison, an open-source large language model is an LLM whose architecture, 
training data (fully or partially), and parameter weights are publicly released, allowing users to 
inspect, modify, and deploy the model without proprietary restrictions. As illustrated in this plot, 
closed source LLMs dominate the industry in terms of performance compared to open source 
models. 

 
Image 1 

 
 They tend to be more accurate in their generations compared to open-source models. 
 
There is a hidden issue within the closed-source models being so domainant. By having control 
over the servers that the dominant LLMs are being run on, they also have control over all the 
data going into these models. This leads to a lack of transparency about where and how the data 
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is being used and stored. When the models that are the highest accuracy do not allow for a high 
level of transparency in how data is being used, it restricts the use cases for LLMs. For example, 
a law firm cannot fine tune a model to help them with paperwork, because that fine tuning 
training would be a security risk and a violation of privacy. There needs to be an LLM that 
allows people to run models on whatever servers they want. 
 
Open-source LLMs are able to be run on local servers and allow for full transparency of the data. 
The problem is that open-source models have low accuracy compared to closed-source which is 
crucial when trying to implement its use. The model architecture of these models is a parameter 
that is difficult to change and so is the training of the model, because of its high compute 
requirements, so we must focus on improving open-source LLM accuracy without changing the 
LLM itself. A possible solution is using iterative-refinement loops, which is a technique where 
one evaluator  LLM is used to give feedback to a generator LLM in order to improve the 
accuracy of its answers. 
 

 
Image 2 

 
This study aims to identify the ability of common use open source LLMs to verify and correct 
their own or other LLMs answers in order to develop the optimal evaluator LLM order for 
iterative refinement loops between LLMs. We will be observing the variance in results based on 
the domain and question as well as the phrasing. The results will then be analyzed relatively to 
the unique architectures of the various models. Since the models are open source, we will be able 
to attribute specific nuances in the architecture of each model to its results, which is something 
that is not widely done in this domain of study because more widely used models are not open 
source. 
 
We hypothesize that Qwen will perform substantially better than LLama in mathematics and 
coding because of its more analytical training schema compared to LLama. We also hypothesize 
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that Llama will perform better than Qwen at logical reasoning and fact checking because of its 
larger training set size. 

Literature Review 

The Transformer 
After the release of the Transformer architecture in 2017, it became widely adopted across almost all 
LLMs for its ability to be able to handle long sequences of text and capture the relationships between 
words. 
 
The Transformer architecture is composed of an encoder-decoder structure that has an autoregressive 
decoder. The encoder is composed of multiple identical layers, each with two sublayers: multi-head self 
attention and a position-wise fully connected feed-forward network. The decoder has a similar structure, 
but with an additional sub-layer for attending to the encoder’s outputs. Both the encoder and decoder 
include residual connections and layer normalization to stabilize training. Positional encodings are added 
to input embeddings to retain the relationships between order of the words [3]. 
 
The Transformer based LLMs have been revealed to be predisposed to problems with hallucinations [4]. 
This is due to them being fundamentally working in log-space, so their self attention mechanism is not 
effective beyond a certain problem complexity. It is not able to consistently perform multi-step logic 
because the self attention is not forming the embedded relationships with parts of the generated response. 
Rather than outputting random errors, Transformers generate fabrications, as a result of the architecture's 
bounded area of reasoning. 

Large Language Models (LLMs)​  
Large language models (LLMs) are neural networks that are trained on large amounts of text in order to 
model their generation like human language. Most currently used LLMs incorporate the Transformer 
architecture. Many of them however, have a decoder-only architecture that was introduced in GPT-2 [5] 
and GPT-3 [6]. These models are trained using casual language modelling. This means that during the 
training, it is adjusted based on the objective to predict the next token in a sequence based only on prior 
tokens. This decoder-only architecture can limit the model’s ability to revise or verify its outputs since it 
does not reconsider the prior generations. Some of these decoder-only architectures such as LLaMA [7] 
and Mistral [8], have become standard in open source LLMs because of their simplicity and scalability. 
However, because they generate responses token-by-token without bidirectional context or separate 
encoder input, their ability to perform tasks like answer verification or correction relies heavily on 
prompting strategies or fine-tuning rather than architectural design [9]. 

Verification and Truthfulness in Language Models 
LLMs are known to generate correct sounding answers that are fluent sounding, but are factually 
incorrect. This has sparked an interest in researching the ability of these LLMs to verify the correctness of 
their outputs. There have been several attempts at creating methods for self-evaluation which is where the 
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model is asked to judge whether its own or another model's response is correct. One approach uses 
iterative refinement where the model generates a response and then critiques it. It then uses its own 
feedback to generate another revised version [10]. There is also a method that uses a structured chain of 
verification, which prompts the model to first reason through whether an answer before finalizing it [11]. 
These strategies have shown some improvements in the accuracy of the LLMs, especially in reasoning 
tasks. Evaluation tests such as TruthfulQA [12] reveal that models struggle with distinguishing fact from 
real sounding misinformation. There has also been improvement through instruction fine training which is 
when the models are explicitly trained to verify and correct answers by using examples [13]. 

Answer Correction and Self-Improvement Techniques  
Several prompting frameworks have been developed that encourage iterative reasoning and revision. One 
of these methods is called the Chain-of -Verification (CoVe), where the model generates an answer, then 
plans verification questions to fact check its original answer, answers those questions independently, and 
then generates its final verified response [14]. This process improves factual accuracy while not needing 
model fine tuning. Another method called Self-Refine, generates an initial output using an LLM, then the 
same LLM provides feedback for its output and uses it to refine itself [10]. Self Refine does not use any 
supervised training, additional training, or reinforcement learning. This makes the technique entirely 
contained within the original LLM. The success of these methods show how answer correction can be 
done through prompting techniques alone, instead of relying solely on model architecture. 

Open-Source vs. Closed-Source LLM Capabilities 
There is a noticeable gap between closed source LLMs like GPT-4 and Claude and the open source 
counterparts such as LLaMA, Mistral and Falcon. This becomes apparent in tasks involving answer 
verification and correction. Closed models have shown strong self-evaluation capabilities due to fine 
tuning and reinforcement learning methods that are not made publicly available. Contrastingly, open 
source models rely on base pretraining without any explicit instruction for self-correction or verification 
[7]. There are also very few studies that measure performance of open source models with these tasks. 

Methodology 

Overview 
This project will be exploring and analyzing the ability of LLMs to verify and correct their own 
and other LLMs answers. Specifically, this project will explore the abilities of open source 
LLM’s, which is significant because of their prevalence in academia, as well as the ability to do 
analysis on its performance relative to the model architecture. 
 
The project methodology will consist of the following components: dataset creation, model 
selection, prompt design, task execution, and evaluation. 
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Dataset Construction 
The initial prompt dataset will consist of 100 handcrafted question and answer pairs. These 
prompts will range in topic and complexity. The topics include: logical reasoning, mathematics, 
factual knowledge, and coding.  
 
The dataset will consist of Q-A pairs that contain incorrect answers as well, to test the LLM’s 
ability to detect an incorrect correction. For each incorrect answer Q-A pair, there will be a 
correct answer in the dataset as well for reference. 

Model Selection 
We will select open source LLMs to test based on their current relevancy. 
 
The specific models that will be used are Llama 3, Qwen 2.5, and Qwen 3. 
 
The hardware being used to host the LLM and perform the inference will be the NYU HPC with 
A-100 GPUS. 

Prompt Design 
When inputting the Q-A pair to the LLM, the way that it is inputted into the LLM will be 
consistent. 
 
For a pair  where each  the initial verification 𝑃
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prompt will be:   
 
“Given the following Question:  and Answer: is the answer correct? Respond ‘yes’ or 𝑄

𝑘
𝐴

𝑘
,  

‘no.’” 
The correction prompt will be: 
 
“If the answer is incorrect, please provide a correct one.” 

Evaluation Procedure 
For each Q-A pair evaluation, the procedure will be as follows: 

1.​ Feed Q-A pairs to the specified LLM using the verification prompt. Record the response 
2.​ If the response was “no”, prompt the LLM with the correction prompt. Record the 

response. 
3.​ Repeat for each LLM across the dataset. 
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Performance Evaluation 
We will be verifying the results based on several criteria: 

●​ Verification Accuracy: Percentage of correct “yes/no” judgements 
●​ Correction Quality: Human evaluation of the quality of the correction 
●​ Domain-Specific Performance: Analyze results by domain (e.g., factual, math) 
●​ Error Typology: Categorize errors (e.g., hallucination, chain-of-thought failure) 

 
Additionally, the differences in performance between the Llama and Qwen model will be 
attributed to their difference in the original training scheme and training data. These models have 
slightly different model architectures, but the main difference lies in the training scheme/data. 

Limitations 
There are limitations that arise from the methodology which include:  

●​ The small dataset of the Q-A pairs, could lead to large discrepancies when analyzing the 
probabilities of the performance of certain types of Q-A pairs. It also leads to less diversity in the 
Q-A pairs being asked in terms of content, which could lead to the misrepresentation of model 
performance. 

●​ The binary nature of the verification prompt answer could lead to larger amounts of answers 
being classified as wrong. By requiring a binary answer from the LLM, it removes any nuance 
possible within the LLM generated response. 

●​ Manual crafting of the Q-A pairs could introduce bias. 
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Results 

Verification Testing 

 
Graph 1 

 
 

 Logical 
Reasoning 

Mathematics Basic Facts Coding 

Qwen 2.5 78% 70% 85% 65% 

Qwen 3 88% 82% 62% 75% 

Llama 3 75% 62% 90% 60% 

Table 1 

Correction Testing 
 

 Logical Mathematics Basic Facts Coding 
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Reasoning 

Qwen 2.5 68% 65% 75% 62% 

Qwen 3 85% 80% 78% 72% 

Llama 3 75% 62% 90% 60% 
Table 2 

Qwen 3: 

●​ Excels in logical reasoning, math, and code correction. 
●​ Recomputes solutions rather than pattern-matching. 
●​ Detects deep logical flaws and multi-step calculation errors. 
●​ Handles semantic code bugs (loops, indexing, recursion). 

Qwen 2.5: 

●​ Balanced performance across domains, but not top in any. 
●​ Good at obvious factual or logic errors; misses subtle issues. 
●​ Limited in complex math proofs or chained reasoning. 
●​ Can fix syntax/code formatting but struggles with algorithmic bugs. 

Llama 3: 

●​ Best for factual corrections (entities, dates, encyclopedic facts). 
●​ High recall of general knowledge; reliable fact-checker. 
●​ Weak in recomputing math or tracing reasoning chains. 
●​ Code corrections, mostly superficial, often repeat original errors. 

Discussion 

Qwen 3 Performance 
Qwen 3 demonstrated the highest correction performance in logical reasoning, mathematics, and 
coding. Its ability to recompute answers from first principles allowed it to identify multi-step 
reasoning flaws and numerical inaccuracies more effectively than the other models. In coding, 
Qwen 3’s semantic understanding of program structure enabled it to trace through algorithms, 
detect logic errors such as off-by-one indexing, and produce corrected solutions that executed as 
intended. While its factual correction accuracy (~78%) lagged behind LLaMA 3, it still showed 
competency when explicitly prompted to fact-check. These results indicate that Qwen 3 is best 
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suited for reasoning-heavy, computational, and algorithmic correction tasks in iterative 
refinement pipelines. 

Qwen 2.5 Performance 
Qwen 2.5 offered balanced but middle-tier performance across all domains. In logical reasoning 
and mathematics, it performed solidly but struggled with deeply nested logical flaws and 
advanced symbolic manipulations. Its factual correction accuracy (~75%) was respectable, and it 
could catch straightforward errors in names, dates, and basic details. In coding, Qwen 2.5 could 
identify and fix syntax errors, as well as some simple semantic issues, but it often failed to 
resolve more complex algorithmic mistakes. Overall, Qwen 2.5’s well-rounded skill set makes it 
a practical secondary evaluator in multi-domain iterative refinement loops, particularly when 
computational resources are limited. 

Llama 3 Performance 
LLaMA 3’s standout strength was in factual correction, where it achieved the highest accuracy 
(~88%), especially in rectifying named entities, historical facts, and general encyclopedic 
information. This advantage likely reflects a pretraining corpus rich in factual content. However, 
LLaMA 3 underperformed in reasoning, mathematics, and coding corrections, often failing to 
detect deep logical inconsistencies or to recompute solutions from scratch. In coding, it tended to 
produce minor variations of the original incorrect output rather than a fundamentally corrected 
solution. These characteristics make LLaMA 3 an excellent choice for fact-focused verification 
and correction, but a weaker candidate for domains requiring high reasoning depth or 
computational precision. 

Conclusion 
This study evaluated the verification and correction capabilities of three open-source LLMs – 
LLaMA 3, Qwen 2.5, and Qwen 3 – across logical reasoning, mathematics, factual knowledge, 
and coding. Qwen 3 consistently outperformed in reasoning, math, and code-related tasks, while 
LLaMA 3 excelled in factual verification and correction. Qwen 2.5 provided balanced but 
mid-tier performance across all domains. These findings suggest that hybrid iterative refinement 
pipelines leveraging Qwen 3 for reasoning-intensive tasks and LLaMA 3 for factual checks can 
maximize correction accuracy.  
 
In the future, doing a substantial amount more testing across several other domains and 
prompting structures, would be helpful to build a more robust pipeline. Creating prompts that 
allow for automation within the feedback loop process is also necessary for the implementation 
of the pipeline. 
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