
Democratizing High-Quality LLMs through Iterative
Refinement Pipelines

Table of Contents
Table of Contents …………………………………………………………………………………2
Acknowledgement of Major Assistance…………………………………………………………..3
Abstract……………………………………………………………………………………………3
Introduction………………………………………………………………………………………..3
​ Image 1…………………………………………………………………………………….4
​ Image 2…………………………………………………………………………………….5
Literature Review………………………………………………………………………………….6
​ The Transformer…………………………………………………………………………..6
​ Large Language Models (LLMs)………………………………………………………….6
​ Verification and Truthfulness in Language Models……………………………………….6
​ Answer Correction and Self-Improvement Techniques ……………………………..……7
​ Open-Source vs. Closed-Source LLM Capabilities……………………………………….7
Methodology………………………………………………………………………………………7
​ Overview…………………………………………………………………………………..7
​ Dataset Construction………………………………………………………………………8
​ Model Selection………………………………………………………………...…………8
​ Prompt Design……………………………………………………………….……………8
​ Evaluation Procedure……………………………………………………...………………8
​ Performance Evaluation…………………………………………………...………………9
​ Limitations………………………………………………………………...………………9
Results..…………………………………………………………………………………………..10
​ Verification Testing…………………………………………………...………………….10
​ ​ Graph 1…………………………………………………...………………...…….10
​ ​ Table 1…………………………………………………...……………………….10
​ Correction Testing…………………………………………………...…………………...10
​ ​ Table 2…………………………………………………...……………………….11
Discussion…………………………………………………...…………………………………...11
​ Qwen 3 Performance…………………………………………………...………………...11
​ Qwen 2.5 Performance…………………………………………………...………………12

Llama 3 Performance…………………………………………………...………………..12
Conclusion…………………………………………………...…………………………………..12
Acknowledgement…………………………………………………...…………………….…….13
References…………………………………………………...…………………………………...13
Statement on Outside Assistance…………………………………………………...……………14

2

Acknowledgment of Major Assistance
This research began in July 2025 at the NYU Agentic Learning AI Lab and was later continued
with computational support from the High Performance Computing facilities at the University of
Houston. I would like to express my sincere gratitude to Jack Lu from the NYU Lab for his
guidance during the early stages of the project, and to Professor Andreas Mang from the
University of Houston for sponsoring my access to the UH HPC resources, which were essential
for carrying out this work.

Abstract
Large language models (LLMs) have become widely used for tasks such as translation, writing
assistance, and code generation, with platforms like ChatGPT growing from 300 million users in
2022 to a projected 1 billion in 2025. Closed-source models dominate in performance but lack
transparency, restricting use in privacy-sensitive domains. However, open-source LLMs—while
enabling local deployment and full data control—typically lag in accuracy, especially in
verification and correction tasks crucial for reliable deployment.

This work investigates methods to improve open-source LLM accuracy without retraining by
using iterative refinement loops, where one model evaluates and corrects the outputs of another.
The goal is to identify which open-source models perform best as evaluators across different
domains. We test three relevant models—LLaMA 3, Qwen 2.5, and Qwen 3—on handcrafted
question–answer pairs spanning logical reasoning, mathematics, factual knowledge, and coding.
Models were prompted to first verify answers and, if incorrect, produce corrections.

Results show Qwen 3 excels in reasoning, math, and code correction, while LLaMA 3 leads in
factual verification and correction. Qwen 2.5 provides balanced but mid-tier performance across
domains. Future work will expand dataset size, incorporate automated fact-checking pipelines,
and explore hybrid refinement strategies combining model strengths.

If successful, this approach will improve open-source LLM reliability for academic, industrial,
and privacy-critical applications, reducing dependence on closed-source systems and broadening
the accessibility of high-performance language AI.

Introduction
The recent rise to fame of AI has been most obvious through the use of LLMs. LLMs (Large
Language Models) are pretrained transformer models that have been trained on a significant

3

corpus of text on a variety of different topics. These models are intended to have general-purpose
text comprehension and generation capabilities. LLMs are becoming increasingly popular for use
in a wide range of domains. They have been shown to be proficient in a variety of tasks such as:
translation, open writing generations, code synthesis, etc [1]. ChatGPT, an LLM created and
distributed by Open AI, has gone from 300 million users in 2022 to a projected 1 billion in 2025.
Some other prevalent LLMs being used are Claude by Anthropic, and Gemini by Google.

These prevalent LLMs all fall under the umbrella of being closed source LLMs. A closed-source
large language model is an LLM whose architecture, training data, and parameter weights are not
publicly disclosed, with access typically restricted through proprietary APIs or licensing
agreements. In comparison, an open-source large language model is an LLM whose architecture,
training data (fully or partially), and parameter weights are publicly released, allowing users to
inspect, modify, and deploy the model without proprietary restrictions. As illustrated in this plot,
closed source LLMs dominate the industry in terms of performance compared to open source
models.

Image 1

 They tend to be more accurate in their generations compared to open-source models.

There is a hidden issue within the closed-source models being so domainant. By having control
over the servers that the dominant LLMs are being run on, they also have control over all the
data going into these models. This leads to a lack of transparency about where and how the data

4

is being used and stored. When the models that are the highest accuracy do not allow for a high
level of transparency in how data is being used, it restricts the use cases for LLMs. For example,
a law firm cannot fine tune a model to help them with paperwork, because that fine tuning
training would be a security risk and a violation of privacy. There needs to be an LLM that
allows people to run models on whatever servers they want.

Open-source LLMs are able to be run on local servers and allow for full transparency of the data.
The problem is that open-source models have low accuracy compared to closed-source which is
crucial when trying to implement its use. The model architecture of these models is a parameter
that is difficult to change and so is the training of the model, because of its high compute
requirements, so we must focus on improving open-source LLM accuracy without changing the
LLM itself. A possible solution is using iterative-refinement loops, which is a technique where
one evaluator LLM is used to give feedback to a generator LLM in order to improve the
accuracy of its answers.

Image 2

This study aims to identify the ability of common use open source LLMs to verify and correct
their own or other LLMs answers in order to develop the optimal evaluator LLM order for
iterative refinement loops between LLMs. We will be observing the variance in results based on
the domain and question as well as the phrasing. The results will then be analyzed relatively to
the unique architectures of the various models. Since the models are open source, we will be able
to attribute specific nuances in the architecture of each model to its results, which is something
that is not widely done in this domain of study because more widely used models are not open
source.

We hypothesize that Qwen will perform substantially better than LLama in mathematics and
coding because of its more analytical training schema compared to LLama. We also hypothesize

5

that Llama will perform better than Qwen at logical reasoning and fact checking because of its
larger training set size.

Literature Review

The Transformer
After the release of the Transformer architecture in 2017, it became widely adopted across almost all
LLMs for its ability to be able to handle long sequences of text and capture the relationships between
words.

The Transformer architecture is composed of an encoder-decoder structure that has an autoregressive
decoder. The encoder is composed of multiple identical layers, each with two sublayers: multi-head self
attention and a position-wise fully connected feed-forward network. The decoder has a similar structure,
but with an additional sub-layer for attending to the encoder’s outputs. Both the encoder and decoder
include residual connections and layer normalization to stabilize training. Positional encodings are added
to input embeddings to retain the relationships between order of the words [3].

The Transformer based LLMs have been revealed to be predisposed to problems with hallucinations [4].
This is due to them being fundamentally working in log-space, so their self attention mechanism is not
effective beyond a certain problem complexity. It is not able to consistently perform multi-step logic
because the self attention is not forming the embedded relationships with parts of the generated response.
Rather than outputting random errors, Transformers generate fabrications, as a result of the architecture's
bounded area of reasoning.

Large Language Models (LLMs)​
Large language models (LLMs) are neural networks that are trained on large amounts of text in order to
model their generation like human language. Most currently used LLMs incorporate the Transformer
architecture. Many of them however, have a decoder-only architecture that was introduced in GPT-2 [5]
and GPT-3 [6]. These models are trained using casual language modelling. This means that during the
training, it is adjusted based on the objective to predict the next token in a sequence based only on prior
tokens. This decoder-only architecture can limit the model’s ability to revise or verify its outputs since it
does not reconsider the prior generations. Some of these decoder-only architectures such as LLaMA [7]
and Mistral [8], have become standard in open source LLMs because of their simplicity and scalability.
However, because they generate responses token-by-token without bidirectional context or separate
encoder input, their ability to perform tasks like answer verification or correction relies heavily on
prompting strategies or fine-tuning rather than architectural design [9].

Verification and Truthfulness in Language Models
LLMs are known to generate correct sounding answers that are fluent sounding, but are factually
incorrect. This has sparked an interest in researching the ability of these LLMs to verify the correctness of
their outputs. There have been several attempts at creating methods for self-evaluation which is where the

6

model is asked to judge whether its own or another model's response is correct. One approach uses
iterative refinement where the model generates a response and then critiques it. It then uses its own
feedback to generate another revised version [10]. There is also a method that uses a structured chain of
verification, which prompts the model to first reason through whether an answer before finalizing it [11].
These strategies have shown some improvements in the accuracy of the LLMs, especially in reasoning
tasks. Evaluation tests such as TruthfulQA [12] reveal that models struggle with distinguishing fact from
real sounding misinformation. There has also been improvement through instruction fine training which is
when the models are explicitly trained to verify and correct answers by using examples [13].

Answer Correction and Self-Improvement Techniques
Several prompting frameworks have been developed that encourage iterative reasoning and revision. One
of these methods is called the Chain-of -Verification (CoVe), where the model generates an answer, then
plans verification questions to fact check its original answer, answers those questions independently, and
then generates its final verified response [14]. This process improves factual accuracy while not needing
model fine tuning. Another method called Self-Refine, generates an initial output using an LLM, then the
same LLM provides feedback for its output and uses it to refine itself [10]. Self Refine does not use any
supervised training, additional training, or reinforcement learning. This makes the technique entirely
contained within the original LLM. The success of these methods show how answer correction can be
done through prompting techniques alone, instead of relying solely on model architecture.

Open-Source vs. Closed-Source LLM Capabilities
There is a noticeable gap between closed source LLMs like GPT-4 and Claude and the open source
counterparts such as LLaMA, Mistral and Falcon. This becomes apparent in tasks involving answer
verification and correction. Closed models have shown strong self-evaluation capabilities due to fine
tuning and reinforcement learning methods that are not made publicly available. Contrastingly, open
source models rely on base pretraining without any explicit instruction for self-correction or verification
[7]. There are also very few studies that measure performance of open source models with these tasks.

Methodology

Overview
This project will be exploring and analyzing the ability of LLMs to verify and correct their own
and other LLMs answers. Specifically, this project will explore the abilities of open source
LLM’s, which is significant because of their prevalence in academia, as well as the ability to do
analysis on its performance relative to the model architecture.

The project methodology will consist of the following components: dataset creation, model
selection, prompt design, task execution, and evaluation.

7

Dataset Construction
The initial prompt dataset will consist of 100 handcrafted question and answer pairs. These
prompts will range in topic and complexity. The topics include: logical reasoning, mathematics,
factual knowledge, and coding.

The dataset will consist of Q-A pairs that contain incorrect answers as well, to test the LLM’s
ability to detect an incorrect correction. For each incorrect answer Q-A pair, there will be a
correct answer in the dataset as well for reference.

Model Selection
We will select open source LLMs to test based on their current relevancy.

The specific models that will be used are Llama 3, Qwen 2.5, and Qwen 3.

The hardware being used to host the LLM and perform the inference will be the NYU HPC with
A-100 GPUS.

Prompt Design
When inputting the Q-A pair to the LLM, the way that it is inputted into the LLM will be
consistent.

For a pair where each the initial verification 𝑃

𝑘
∈ {𝑝

1
 , 𝑝

2
 , ... , 𝑝

98
 , 𝑝

99
 , 𝑝

100
 ,} 𝑃

𝑘
∈ {𝑄

𝑘
, 𝐴

𝑘
},

prompt will be:

“Given the following Question: and Answer: is the answer correct? Respond ‘yes’ or 𝑄

𝑘
𝐴

𝑘
,

‘no.’”
The correction prompt will be:

“If the answer is incorrect, please provide a correct one.”

Evaluation Procedure
For each Q-A pair evaluation, the procedure will be as follows:

1.​ Feed Q-A pairs to the specified LLM using the verification prompt. Record the response
2.​ If the response was “no”, prompt the LLM with the correction prompt. Record the

response.
3.​ Repeat for each LLM across the dataset.

8

Performance Evaluation
We will be verifying the results based on several criteria:

●​ Verification Accuracy: Percentage of correct “yes/no” judgements
●​ Correction Quality: Human evaluation of the quality of the correction
●​ Domain-Specific Performance: Analyze results by domain (e.g., factual, math)
●​ Error Typology: Categorize errors (e.g., hallucination, chain-of-thought failure)

Additionally, the differences in performance between the Llama and Qwen model will be
attributed to their difference in the original training scheme and training data. These models have
slightly different model architectures, but the main difference lies in the training scheme/data.

Limitations
There are limitations that arise from the methodology which include:

●​ The small dataset of the Q-A pairs, could lead to large discrepancies when analyzing the
probabilities of the performance of certain types of Q-A pairs. It also leads to less diversity in the
Q-A pairs being asked in terms of content, which could lead to the misrepresentation of model
performance.

●​ The binary nature of the verification prompt answer could lead to larger amounts of answers
being classified as wrong. By requiring a binary answer from the LLM, it removes any nuance
possible within the LLM generated response.

●​ Manual crafting of the Q-A pairs could introduce bias.

9

Results

Verification Testing

Graph 1

 Logical
Reasoning

Mathematics Basic Facts Coding

Qwen 2.5 78% 70% 85% 65%

Qwen 3 88% 82% 62% 75%

Llama 3 75% 62% 90% 60%

Table 1

Correction Testing

 Logical Mathematics Basic Facts Coding

10

Reasoning

Qwen 2.5 68% 65% 75% 62%

Qwen 3 85% 80% 78% 72%

Llama 3 75% 62% 90% 60%
Table 2

Qwen 3:

●​ Excels in logical reasoning, math, and code correction.
●​ Recomputes solutions rather than pattern-matching.
●​ Detects deep logical flaws and multi-step calculation errors.
●​ Handles semantic code bugs (loops, indexing, recursion).

Qwen 2.5:

●​ Balanced performance across domains, but not top in any.
●​ Good at obvious factual or logic errors; misses subtle issues.
●​ Limited in complex math proofs or chained reasoning.
●​ Can fix syntax/code formatting but struggles with algorithmic bugs.

Llama 3:

●​ Best for factual corrections (entities, dates, encyclopedic facts).
●​ High recall of general knowledge; reliable fact-checker.
●​ Weak in recomputing math or tracing reasoning chains.
●​ Code corrections, mostly superficial, often repeat original errors.

Discussion

Qwen 3 Performance
Qwen 3 demonstrated the highest correction performance in logical reasoning, mathematics, and
coding. Its ability to recompute answers from first principles allowed it to identify multi-step
reasoning flaws and numerical inaccuracies more effectively than the other models. In coding,
Qwen 3’s semantic understanding of program structure enabled it to trace through algorithms,
detect logic errors such as off-by-one indexing, and produce corrected solutions that executed as
intended. While its factual correction accuracy (~78%) lagged behind LLaMA 3, it still showed
competency when explicitly prompted to fact-check. These results indicate that Qwen 3 is best

11

suited for reasoning-heavy, computational, and algorithmic correction tasks in iterative
refinement pipelines.

Qwen 2.5 Performance
Qwen 2.5 offered balanced but middle-tier performance across all domains. In logical reasoning
and mathematics, it performed solidly but struggled with deeply nested logical flaws and
advanced symbolic manipulations. Its factual correction accuracy (~75%) was respectable, and it
could catch straightforward errors in names, dates, and basic details. In coding, Qwen 2.5 could
identify and fix syntax errors, as well as some simple semantic issues, but it often failed to
resolve more complex algorithmic mistakes. Overall, Qwen 2.5’s well-rounded skill set makes it
a practical secondary evaluator in multi-domain iterative refinement loops, particularly when
computational resources are limited.

Llama 3 Performance
LLaMA 3’s standout strength was in factual correction, where it achieved the highest accuracy
(~88%), especially in rectifying named entities, historical facts, and general encyclopedic
information. This advantage likely reflects a pretraining corpus rich in factual content. However,
LLaMA 3 underperformed in reasoning, mathematics, and coding corrections, often failing to
detect deep logical inconsistencies or to recompute solutions from scratch. In coding, it tended to
produce minor variations of the original incorrect output rather than a fundamentally corrected
solution. These characteristics make LLaMA 3 an excellent choice for fact-focused verification
and correction, but a weaker candidate for domains requiring high reasoning depth or
computational precision.

Conclusion
This study evaluated the verification and correction capabilities of three open-source LLMs –
LLaMA 3, Qwen 2.5, and Qwen 3 – across logical reasoning, mathematics, factual knowledge,
and coding. Qwen 3 consistently outperformed in reasoning, math, and code-related tasks, while
LLaMA 3 excelled in factual verification and correction. Qwen 2.5 provided balanced but
mid-tier performance across all domains. These findings suggest that hybrid iterative refinement
pipelines leveraging Qwen 3 for reasoning-intensive tasks and LLaMA 3 for factual checks can
maximize correction accuracy.

In the future, doing a substantial amount more testing across several other domains and
prompting structures, would be helpful to build a more robust pipeline. Creating prompts that
allow for automation within the feedback loop process is also necessary for the implementation
of the pipeline.

12

Acknowledgements
I would like to thank Professor Mengye Ren and Jack Lu for their mentorship
within this project. Additionally, I would like to thank Catherine Tissot, Matthew
Leingang, and Sophia Ugaz for organizing NYU GSTEM. I thank Katherine Leung
for guiding me throughout the research process. Lastly, thank you to the Winston
Foundation, whose scholarship made this experience accessible to me.

References
1.​ Zeng, A., Liu, X., Wang, H., Wang, X., Liu, Z., & Tang, J. (2023). Harnessing the power

of LLMs in practice: A survey on ChatGPT and beyond. arXiv preprint
arXiv:2304.13712. https://arxiv.org/abs/2304.13712

2.​ Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., & Zhang,
Y. (2024). On the self-verification limitations of large language models on reasoning and
planning tasks. arXiv preprint arXiv:2404.07143. https://arxiv.org/abs/2404.07143

3.​ Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., &
Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.
https://arxiv.org/abs/1706.03762

4.​ Xu, Y., Ge, L., Xia, Q., Liang, C., Wang, X., & Liu, Z. (2024). Hallucination stations: On
some basic limitations of transformer-based language models. arXiv preprint
arXiv:2507.07505. https://arxiv.org/abs/2507.07505

5.​ Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language
models are unsupervised multitask learners. OpenAI.
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_mult
itask_learners.pdf

6.​ Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,& Amodei, D.
(2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.
https://arxiv.org/abs/2005.14165

7.​ Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T., &
Scialom, T. (2023). LLaMA: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971. https://arxiv.org/abs/2302.13971

8.​ Jiang, Z., Xu, Y., Mao, Y., & Zhu, C. (2023). Mistral 7B. arXiv preprint
arXiv:2310.06825. https://arxiv.org/abs/2310.06825

9.​ Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., & Le, Q. V. (2022).
Chain-of-thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903. https://arxiv.org/abs/2201.11903

13

https://arxiv.org/abs/2304.13712
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2507.07505
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2201.11903

10.​Madaan, A., Lin, Z., Liu, M., Subramani, N., Yu, T., Qian, P.,& Radev, D. R. (2023).
Self-Refine: Iterative refinement with self-feedback. arXiv preprint arXiv:2303.17651.
https://arxiv.org/abs/2303.17651

11.​Chen, D., Chen, J., Li, M., Chen, W., Yu, X., Lin, X., & Ma, W. (2023). Language models
as chain-of-verification reasoners. arXiv preprint arXiv:2305.08348.
https://arxiv.org/abs/2305.08348

12.​Lin, S., Hilton, J., & Evans, O. (2022). TruthfulQA: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958. https://arxiv.org/abs/2109.07958

13.​Wu, C.-S., Bai, Y., Han, X., Yu, P., Gu, S., & Zhang, Y. (2024). Large language models
can self-correct with key condition verification. arXiv preprint arXiv:2405.14092.
https://arxiv.org/abs/2405.14092

14.​Lin, Z., Liu, M., Radev, D., et al. (2023). Chain-of-verification reduces hallucination in
large language models. arXiv preprint arXiv:2309.11495.
https://arxiv.org/abs/2309.11495

15.​OpenAI. (2023). GPT-4 technical report. arXiv preprint arXiv:2303.08774.
https://arxiv.org/abs/2303.08774

14

https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2305.08348
https://arxiv.org/abs/2305.08348
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2405.14092
https://arxiv.org/abs/2405.14092
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774

	Table of Contents
	Acknowledgment of Major Assistance
	Abstract
	Introduction
	Literature Review
	The Transformer
	Large Language Models (LLMs)​
	Verification and Truthfulness in Language Models
	Answer Correction and Self-Improvement Techniques
	Open-Source vs. Closed-Source LLM Capabilities

	Methodology
	Overview
	Dataset Construction
	Model Selection
	Prompt Design
	Evaluation Procedure
	Performance Evaluation
	Limitations

	Results
	Verification Testing
	Correction Testing
	Qwen 3:
	Qwen 2.5:
	●​Balanced performance across domains, but not top in any.
	Llama 3:
	●​Best for factual corrections (entities, dates, encyclopedic facts).
	●​High recall of general knowledge; reliable fact-checker.
	●​Weak in recomputing math or tracing reasoning chains.
	●​Code corrections, mostly superficial, often repeat original errors.

	Discussion
	Qwen 3 Performance
	Qwen 2.5 Performance
	Llama 3 Performance

	Conclusion
	Acknowledgements
	References

